Sains Malaysiana 53(11)(2024): 3651-3661
http://doi.org/10.17576/jsm-2024-5311-09
Sintesis dan Pencirian Zarah Silika Berongga dalam Aplikasi Biosensor DNA
(Synthesis and
Characterization of Hollow Silica Spheres as DNA Biosensor Application)
EDA YUHANA ARIFFIN1, LEE YOOK HENG2 & SITI AISHAH HASBULLAH2,*
1Chemistry Section, School
of Distance Education, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
2Department of Chemical
Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Diserahkan:
21 Mei 2024/Diterima: 13 Ogos 2024
Abstrak
Pembangunan model biosensor
DNA berasaskan zarah silika berongga sebagai tapak pemegunan DNA boleh digunakan di dalam aplikasi biosensor DNA. Zarah silika berongga berjaya disintesis dan pencirian dijalankan dengan menggunakanmikroskop elektron pengimbasan
pelepasan medan (FESEM), kalorimeter imbasan pembeza (DSC), penganalisis saiz
zarah dan pembelauan sinar-X (XRD). Isi padu rongga, luas permukaan khusus dan
penyebaran saiz rongga diukur dengan menggunakan Micrometric ASAP 2020 melalui kaedah Brunauer-Emmett-Teller(BET)/Barret-Joyner-Halenda(BJH). Surfaktan Tween 20, Triton-X dan CTAB dengan suhu dan masa
tindak balas yang berbeza digunakan dalam penghasilan zarah silika berongga. Berdasarkan
analisis FESEM dan BET/BJH, zarah silika berongga yang disintesis dengan
menggunakan surfaktan Tween 20 pada suhu 27 °C dan tindak balas dijalankan
selama 8 hari mempunyai luas permukaan yang paling besar. Zarah silika berongga
ini digunakan dalam pemegunan prob DNA E. coli dan didapati biosensor
ini menunjukkan kebolehpilihan yang tinggi terhadap DNA sasaran E. coli.
Ini disebabkan oleh zarah silika berongga mempunyai tapak pemegunan prob DNA
yang tinggi dan kadar penghibridan juga meningkat. Kajian ini sangat penting
dalam menghasilkan zarah silika berongga sebagai tapak pemegun DNA bagi
biosensor DNA yang dibangunkan.
Kata kunci:
Biosensor DNA; pencirian; sintesis; zarah silika berongga
Abstract
Development of DNA
biosensor model based on hollow silica spheres as DNA immobilization sites can
be used for DNA biosensor application. Hollow silica spheres were successfully
synthesized and characterized using field emission scanning electron microscopy
(FESEM), differential scanning calorimetry (DSC), particle size analyzer and X-ray diffraction (XRD). Hollow volume,
specific surface area and hollow size distribution was measured using Micrometer ASAP 2020 through Brunauer-Emmett-Teller(BET)/Barret-Joyner-Halenda(BJH) method. Tween 20
surfactant, Triton-X and CTAB with different temperature and different reaction
time was used in synthesizing hollow silica spheres. Based on FESEM and BET/BJH
analysis, hollow silica spheres synthesized using Tween 20 surfactant at
temperature 27 °C and the reaction carried out for 8 days have the largest
surface area. Hollow silica spheres was used in E. coli DNA probe
immobilization and it was found that this biosensor showed high selectivity
against E. coli DNA target. This is due to the hollow silica particles
having high DNA probe immobilization sites and increased hybridization rates.
This new finding is so valuable in making hollow silica spheres as DNA
immobilisation sites for the developed DNA biosensor.
Keywords: Characterisation;
DNA biosensor; hollow silica spheres; synthesis
RUJUKAn
Alqasaimeh,
M., Lee, Y.H., Ahmad, M., Raj, A.S.S. & Tan, L.L. 2014. A large response range reflectometric urea
biosensor made from silica-gel nanoparticles. Sensors 14: 13186-13209.
Ballem, M.A., Córdoba, J.M. & Odén, M. 2010. Influence of synthesis temperature on
morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous and Mesoporous Materials 129: 106-111.
Bueno, V. & Ghoshal, S.
2020. Self-assembled surfactants-templated synthesis of porous hollow silica
nanoparticles: Mechanism of formation and feasibility of post-synthesis
nanoencapsulation. Langmuir 36: 14633-14643.
Caruso, F., Caruso, R.A
& Mohwald. 1998. Nanoengineering of inorganic and
hybrid hollow spheres by colloical templating. Science 282: 1111-1114.
Carvalho, A.M., Cordeiro,
R.A. & Faneca, H. 2020. Silica-based gene
delivery systems: From design to therapeutic applications. Pharmaceutic 12(7): 649.
De Lange, M.F., Vlugt, T.J.H., Gascon, J. & Kapteijn,
F. 2014. Adsorptive characterization of porous solids: Error analysis guides
the way. Microporous and Mesoporous Materials 200: 199-215.
Deng, Y., Lettmann, C. & Maier, W.F. 2001. Leaching of amorphous
V- and Ti- containing porous silica catalyst in
liquid phase oxidation reactions. Applied Catalysis A: General 214(1):
31-46.
Grinenval, E., Basset, J-M. &
Lefebvre, F. 2013. A novel approach to prepare well-defined silica supported
polyoxometalate species by reaction with a chlorinated support. Journal of
Inorganic Chemistry https://doi.org/10.1155/2013/902192
Guo, H., Qian, H., Sun, S.,
Sun, D., Yin, H., Cai, X., Liu, Z., Wu, J., Jiang, T. & Liu, X. 2011.
Hollow mesoporous silica nanoparticles for intracellular delivery of
fluorescent dye. Chemistry Central Journal 5: 1.
He, F., Zhuo,
R.X., Liu, L.J., Jin, D.B., Feng, J. & Wang, X.L.
2001. Immobilized lipase on porous silica beads: Preparation and application
for enzymatic ring-opening polymerization of cyclic phosphate. Reactive and
Functional Polymers 47(2): 153-158.
Huang, X., Young, N.P.
& Townley, H.E. 2014. Characterization and comparison of mesoporous silica
particles for optimized drug delivery. Nanomaterial Nanotechnology 4:
1-15.
Information for users of
METTLER TOLEDO thermal analysis systems. 2000. UserCom 1/2000.
Jain, A., Rogojevic, S., Ponoth, S.,
Agarwal, N., Matthew, I., Gill, W.N., Persans, P., Tomozawa, M., Plawsky, J.L. &
Simonyi, E. 2001. Porous silica materials as low-k dielectrics for electronic
and optical interconnects. Thin Solid Films 398-399: 513-522.
Khodaee, P., Najmoddin,
N. & Shahrad, S. 2018. The effect of ethanol and
temperature on the structural properties of mesoporous silica synthesized by
sol-gel method. Journal of Tissues and Materials 1: 10-17.
Khoeini, M., Najafi, A., Rastegar, H. & Amani, M. 2019. Improvement of hollow
mesoporous silica nanoparticles synthesis by hard-templating method via CTAB
surfactant. Ceramics International 45: 12700-12707.
Lee, B., Kim, Y., Lee, H.
& Yi, J. 2001. Synthesis of functionalized porous silicas via templating
method as heavy metal ion adsorbents: The introduction of surface
hydrophilicity onto the surface of adsorbents. Microporous and Mesoporous
Materials 50: 77-90.
Maqbool, Q., Chanchal, A.
& Srivastava, A. 2018. Tween 20-assisted synthesis of uniform mesoporous
silica nanospheres with wormhole porosity for efficient intracellular curcumin
delivery. Chemistry Select 3: 3324-3329.
Morey, M.S., O’Brien, S.,
Schwarz, S. & Stucky, G.D. 2000. Hydrothermal and postsynthesis surface modification of cubic, MCM-48 and ultralarge pore SBA-15 mesoporous silica with titanium. Chemistry of Materials 12(4): 898-911.
Mourhly, A., Khachanil,
M., Hamidi, A.E., Kacimi, M., Halim, M. & Arsalane, S. 2015. The synthesis and characterization of
low-cost mesoporous silica SiO2 from local pumice rock. Nanomaterials
and Nanotechnology 5: 35.
Nakanishi, K., Tomita, M.
& Kato, K. 2015. Synthesis of amino-functionalized mesoporous silica sheets
and their application for metal ion capture. Journal of Asian Ceramic
Societies 3: 70-76.
Narayanan, V. 2008.
Synthesis of mesoporous silica microsphere from dual surfactant. Materials
Research 11(4): 443-446.
Nguyen, A-T., Park, C.W.
& Kim, S.H. 2014. Synthesis of hollow silica by stöber method with double polymers as templates. Bulletin Korean Chem. Soc.
35(1): 173-176.
Nguyen, N.H., Truong-Thi, N-H., Nguyen, D.T.D., Ching, Y.C., Huynh, N.T. &
Nguyen, D.H. 2022. Non-ionic surfactants As co-templates to control the mesopore diameter of hollow mesoporous silica
nanoparticles for drug delivery applications. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 655: 130218.
Okada, K., Shimai, A., Takei, T., Hayashi, S., Yasumori,
A. & MacKenzie, K.J.D. 1998. Preparation of
microporous silica from metakaolinite by selective
leaching method. Microporous and Mesoporous Materials 21: 289-296.
Pagliaro, M. 2009. Functionalized
Silicas: The Principles in Silica-Based Materials for Advanced Chemical
Applications. RSC Publishing. hlm. 1-34.
Sun, R., Wang, W., Wen, Y.
& Zhang, X. 2015. Recent advance on mesoporous silica nanoparticles-based
controlled release system: Intelligent switches open up new horizon. Nanomaterials 5: 2019-2053.
Ulianas, A., Lee, Y.H., Sharina, A.H. & Tan, L.L. 2012. An electrochemical DNA microbiosensor based on succinimide-modified acrylic
microspheres. Sensor 12: 5445-5460.
Xin, C., Wang, X., Liu, L.,
Yang, J., Wang, S. & Yan, Y. 2020. Rational design of monodispersed
mesoporous silica nanoparticles for phytase immobilisation. ACS Omega 5:
30237-30242.
Xuefeng, D., Yu, K., Jiang, Y., Bala, H. & Wang, Z. 2004. A novel approach to the
synthesis of hollow silica nanoparticles. Materials Letters 58:
3618-3621.
Yoncheva, K., Popova, M., Szegedi, A., Mihaly, J., Tzankov,
B., Lambov, N., Konstantinov,
S., Tzankova, V., Pessina, F. & Valoti, M. 2014. Functionalized mesoporous silica
nanoparticles for oral delivery of budesonide. Journal of Solid
State Chemistry 211: 154-161.
Zhang, Z., Dai, S., Fan,
X., Blom, D.A., Pennycook, S.J. & Wei, Y. 2001.
Controlled synthesis of CdS nanoparticles inside
ordered mesoporous silica using ion-exchange reaction. The Journal of
Physical Chemistry B 105(29): 6755-6758.
Zielinski, J.M. &
Kettle, L. 2013. Physical Characterization: Surface Area and Porosity.
Intertek Chemicals and Pharmaceuticals. hlm.
1-6.
Zoldesi, C.I. & Imhof, A. 2005. Synthesis of monodisperse colloidal
spheres, capsules, and microballoons by emulsion
templating. Advanced Materials 17(7): 924-928.
*Pengarang untuk surat-menyurat;
email: aishah80@ukm.edu.my
|